PC11 Final Exam TERM 3 Review

Chapter 3\&4: Quadratic Functions

1. Solve the following equations:
a) $x^{2}-2 x-7=0$
b) $x^{2}+2 x+7=0$
c) $(2 x+1)(x-1)=5 x$
$x=-2 \pm \sqrt{(2)^{2}-4(7)}$
$2 x^{2}-x-1-5 x$ $2 x^{2}-6 x-1=0$
$=\frac{2 \pm \sqrt{32}}{2} \quad \therefore x_{1}=1+2 \sqrt{2}$
$=\frac{-2 \pm \sqrt{2-24}}{2}-$ Not possible.
$x=\frac{6 \pm \sqrt{(-6)^{2} \cdot 4(2 x-1)}}{2(2)}$
$=\frac{6 \pm \sqrt{44}}{4}$
2. What is a perfect square trinomial?

$$
\begin{aligned}
& \therefore \text { Sol real } \\
& \text { Solution. }
\end{aligned}
$$

A trinomial that can be factored as

$$
=\frac{6 \pm 2 \sqrt{11}}{4}=\frac{3 \pm \sqrt{11}}{2}
$$

the square of a binomial.

$$
a^{2}+2 a b+b^{2}=(a+b)^{2}
$$

\therefore Solutions
$x_{1}=\frac{3+\sqrt{11}}{2}$
$x_{2}=3-\sqrt{11}$
3. Graph the following equation $y=4 x^{2}-24 x+3$. Identify the vertex, intercepts, equation of a.o.s, domain and range

$$
\text { a.o.s: } x=-\frac{b}{2 a}=\frac{24}{8}=3
$$

X-Int:

Use: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
vertex: $(3,-33)$
Y-Int: $(0,3)$
Domain: $x \in R$

Range: $y \geq-33, y \in R$

$$
\begin{aligned}
& x_{1}=\frac{6+\sqrt{33}}{2} \\
& x_{2}=\frac{6-\sqrt{33}}{2}
\end{aligned}
$$

1 Skatrin a grant for $\mathrm{v}=-3 \mathrm{x}^{-}-4 \mathrm{x}+4$. What is me axis or symmetry, vertex, x - merceph, y memuept,
4. Sketch a graph for $y=-3 x^{2}-4 x+4$. What is the axis of symmetry, vertex, x - intercept, y intercept, domain and range.

a.o.s: $x=-\frac{b}{2 a}=\frac{4}{-6}=-\frac{2}{3}$
vertex: $\left(-\frac{2}{3}, \frac{16}{3}\right)$
X-Int: $(-2,0)\left(\frac{2}{3}, 0\right)$
vertex: $(0,4 \mid)$
Domain: $x \in R$
Range: $y \leq \frac{16}{3}, y \in R$

5. For the quadratic equation $y=3 x^{2}+12 \mathrm{x}-2$
a. Without solving predict the zeros of this equation. (use discriminat)

$$
b^{2}-4 a c=12^{2}-4(3 x-2)=168 \quad \therefore 2 \text { real routs }
$$

b. Find the x and y intercepts. What do is the significance of these intercepts?
y-int: $(0,-2)$ $x=\frac{-12 \pm \sqrt{12^{2}-4(3)(-2)}}{6}=-\frac{12 \pm \sqrt{168}}{6}$
c. Change the equation to standard form
$y=3\left(x^{2}+4 x\right)-2$
$y=3\left(x^{2}+4 x+4\right)-2-12 \int$
d. What are the coordinates of the vertex?

$$
(-2,-14)
$$

e. What is the equation of axis of symmetry?

$$
x=-2
$$

f. What is the domain and range?

Domain: $x \in \mathbb{R}$

$$
\text { Range: } y \geq-14, y \in \mathbb{R}
$$

6. Write the equation of the following graph

Step 1: Use Factored Form

$$
\begin{aligned}
& y=a\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& y=a(x+2)(x-1)
\end{aligned}
$$

Step 2: Use Point ($0,-3$) to find "a"

$$
\begin{aligned}
& -3=a(0+2)(0-1) \\
& -3=-2 a \\
& a=\frac{3}{2}
\end{aligned}
$$

Equation: $\quad y=\frac{3}{2}(x+2)(x-1)$
7. What is the discriminate for $y=4 x^{2}-24 x+3$?

$$
b^{2}-4 a c=(-24)^{2}-4(4)(3)=528
$$

8. What does the discriminate need to be for a quadratic function to have no zeroes?

The discriminant must be negative in order to have no zeros. ($\left.b^{2}-4 a c l 0.\right)$.
9. Given the zeroes of a quadratic function, 4 and -8 . What is the equation of axis of symmetry?

$$
\begin{aligned}
& \frac{-8+4}{2}=\frac{-4}{2}=-2 \text { The equation of the axis of } \\
& \text { symmetry is } x=-2 .
\end{aligned}
$$

'io. Every week, a restaurant sells approximately 300 pizzas for $\$ 2.50$ each. Through market research, the restaurant manager determines that for every $\$ 0.10$ increase in price, they will sell 20 less pizzas. What is the price of a pizza that will maximize the revenue and what is the maximum revenue?
Let x be the amount of increase. x is the level of increase it most be
Idea. $300 \times 2.5,2.6 \times 280,27 \times 260 \ldots$ f $f(x)=-2(x+5)^{2}+\mathbf{8 0 0}$ Revenue: $(300-20 x)(2.5+0.1 x)$.

$$
\therefore \text { vertex }(-5,800)
$$

$$
\begin{aligned}
f(x) & =750+30 x-50 x-2 x^{2} \\
f(x) & =-2 x^{2} \cdot 20 x+750 \\
& =-2\left(x^{2}+10 x\right)+750
\end{aligned}
$$

$$
\text { Price }=2.50+0.1(-5)
$$

$$
\text { Price }=\$ 2.00
$$

\therefore The price of pizza should be $\$ 2.00$ to maximize the revenue of $\$ \mathbf{8 0 0}$
11. A rectangular play area is to be bounded by 120 m of fencing. Determine the maximum area and the dimensions of this rectangle.

$$
\begin{aligned}
& \begin{array}{l}
2 x+2 y=120 \\
x \cdot y=\text { max area }
\end{array} \quad\left\{\begin{array}{l}
y=60-x \\
x-y
\end{array}\right. \\
& f(x)=-\left(x^{2}-60 x\right) \\
& f(x)=-\left(x^{2}-2 \cdot 30 x+30^{2}-30^{2}\right) x^{2} x y=x(60-x) \\
& f(x)=-(x-30)^{2}+900 \\
& \text { vertex }(30,900) \\
& x y=30(60-30) \\
&
\end{aligned}
$$

12. Every week, a take-out restaurant sells approximately 2000 chicken wraps for $\$ 1.50$ each. Through
 dimensions $30 \mathrm{~m} \times 30 \mathrm{~m}$. market research, the restaurant manager determines that for every $\$ 0.10$ increase in price, she will sell 100 fewer wraps. What is the price of a wrap that will maximize the revenue and what is the maximum revenue?
Let y be the amount of increase.
$200 \times 1.5 ; 1.6 \times 1900 ; 1.7 \times 1800]$
Revenue: $(2000-100 \%)(1,510.1 x)$
x is level of increase it must be

$$
\begin{aligned}
f(x) & =3000+200 x-150 x-10 x^{2} \\
f(x) & -10 x^{2}+5 x+3000 \\
& =-10\left(x^{2}-5 x\right)+3000 \\
& =-10(x-5 / 2)^{2}+-\frac{35}{4}+3000
\end{aligned}
$$

$$
\therefore \operatorname{vertex}(5 / 2,30625)
$$

\Rightarrow
The pace of a wrap show ld be $/ 1.5 x+0.1 x=1.520,35=175)$

* 1.75 . The maximum revenue would be $\$ 3062,50$.

13. The graph of a quadratic function passes through $A(-5,8)$, and the x-intercepts of the function are -2 and 9. What is the equation of the graph in general form?

$$
\begin{array}{ll}
y=a(x+2)(x-9) & \\
8=a(-5+2)(-5-9) & y=\frac{4}{21}(x+2)(x-9) \\
\frac{8}{42}=\frac{42 a}{42} & y=\frac{4}{21}\left(x^{2}-7 x-18\right) . \\
a=4 / 21
\end{array}
$$

14. The graph of a quadratic function passes through points $A(2,5)$ and $B(-4,-1)$. The axis of symmetry' is $x=1$. What is the equation of the graph in standard form?

$$
\begin{gather*}
y=a(x-p)^{2}+q \\
a \cdot 05 \Rightarrow x=1: y=a(x-1)^{2}+q \\
\therefore y=-1 / 4(x-1)^{2}+\frac{21}{4} \tag{20}
\end{gather*}
$$

$$
\text { Point A: } 5=a(2-1)^{2}+q
$$

$$
-1=25 a+q
$$

$$
\begin{aligned}
& 5=-1 / 4+q \\
& q: \frac{21}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { Put (1) into(2): }-1 & =25 a+5-a \\
-6 & =24 a+1 / 4
\end{aligned}
$$

15. The graph of a quadratic function passes through $B(6,-60)$, and the zeros of the function are -4 and 2 . Write the equation of the graph in general form.

$$
\begin{aligned}
y & =a(x+4)(x-2) \\
-60 & =a(6+4)(6-2) \\
\frac{-60}{40} & =\frac{40 a}{40} \\
a & =-3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& y=-3 / 2(x+4)(x-2) \\
& y=-3 / 2\left(x^{2}+2 x-8\right) \\
& y=-3 / 2 x^{2}-3 x+12
\end{aligned}
$$

Chapter 5: Inequalities

1. Solve the quadratic inequality
a. $0>2 x^{2}+7 x+6$ $-2 \angle x<-3 / 2$
b) $0 \leq 12 x^{2}-44 x+7$ $x \leq \frac{1}{6}$ or
2. Write an inequality to describe this graph

$$
x \pm 7 / 2
$$

Step 1: Use standard Form

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& y=a(x+2)^{2}-4
\end{aligned}
$$

Step 2: Use Point any point such as (-1, -6) to find "a"

$$
a=-2
$$

Step 3: Use a Test Point to find $<$ or $>$
Note: Because it is dashed line we know it cannot be \leq or \geq

Equation: $y<-2(x+2)^{2}-4$

$$
y<-2 x^{2}
$$

$$
y \leq \frac{3}{5} x-5
$$

$$
y \geq 2 x^{2}
$$

$$
y \geq \frac{7}{4} x+2
$$

$$
y \leq(x-3)^{2}+2
$$

$$
y \geq-3 x^{2}
$$

3. Solve the systems

Put (2) into

$$
\begin{gathered}
5 x+6=2 x^{2}+7 \\
0=2 x^{2}+2 x \\
0=2 x(x+1) \\
x_{1}=0 \text { or } x_{2}=-1
\end{gathered}
$$

Check.
Both

$$
\begin{aligned}
& 6=2(0)^{2}+7(0)+6 \\
& 6=6 \mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
& 1=2(-1)^{2}+7(-1)+b \\
& 1=2+6-7 \\
& 1=1
\end{aligned}
$$

$$
\begin{align*}
& y=2 x^{2}+7 x+6 \tag{1}\\
& y-5 x=6 \rightarrow y=5 x+6 \tag{2}\\
& k_{1}: y_{1}-5(0)=6 \\
& y_{1}=6
\end{align*}
$$

$$
\begin{gathered}
x_{2} \cdot y_{2}-5(-1)=6 \\
y_{2}=6-5
\end{gathered}
$$

Put (2) into (1).
(1) $y=-(x-3)^{2}+10$

$$
\begin{array}{lll}
3 x-2=-(x-3)^{2}+10 & \text { (2) } & y=3 x-2 \\
3 x-2=-x^{2}+6 x-9+10 & x_{2}: y_{1}=\frac{9-3 \sqrt{21}}{2}-2 \\
x^{2}-3 x-3=0 & y_{2}=\frac{5-3 \sqrt{2}}{2} \\
x=\frac{3 \pm \sqrt{(-3)^{2}-4(-3)}}{2(1)}=\frac{3 \pm \sqrt{21}}{2} & x_{1} \circ y_{1}=\frac{9+3 \sqrt{21}}{2}-2 \\
x_{1}=\frac{3+\sqrt{21}}{2} \quad x_{2}=\frac{3-\sqrt{21}}{2} & y_{1}=\frac{5+3 \sqrt{21}}{2} \\
\text { Chapter 7: Rational Expressions } &
\end{array}
$$

1. Simplify the rational expression. State all the NON PERMISSIBLE values.

$$
\begin{aligned}
& \therefore\left\{\begin{array}{l}
x_{1}=0 \\
y_{1}=6
\end{array}\right. \\
& \therefore\left\{\begin{array}{l}
x_{2}=-1 \\
y_{2}=1
\end{array}\right.
\end{aligned}
$$

\therefore Solutions

$$
\left\{\begin{array}{l}
x_{1}=\frac{3+\sqrt{21}}{2} \\
y_{1}=\frac{5+3 \sqrt{21}}{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{2}=\frac{3-\sqrt{21}}{2} \\
y_{z}=\frac{5-3 \sqrt{21}}{2}
\end{array}\right.
$$

Check!
a. $\begin{aligned} \frac{9 x+18}{x^{2}-2 x-8} \cdot \frac{3 x-12}{6 x} & =\frac{9(x+2)}{(x-4)(x+2)} \cdot \frac{3(x-y)}{6 x} \\ & =\frac{18}{6 x}=3 x \quad x \neq 4,-2,0\end{aligned}$
b. $\frac{5 n+15}{4 n+8} \cdot \frac{2 n+4}{3 n+9}=\frac{5(n+3)}{2^{24(n+2)}} \cdot \frac{2(n+2)}{3(n+3)}=\frac{5}{6}$.

$$
x \neq-2,-3
$$

$$
\text { c. } \begin{aligned}
& \frac{m^{2}-2 m-8}{8 m+24} \div \frac{2 m-8}{m^{2}+7 m+12} \\
= & \frac{(m-4)(m+2)}{8(m+3)} \div \frac{2(m-4)}{(m+4)(m+3)}
\end{aligned}\left\{\begin{array}{l}
\frac{(m-4)(m+2)}{8(m+3)} \times \frac{(m+4)(m+3)}{2(m-4)} \\
=\frac{m+2)(m+4)}{16}
\end{array} m \neq-3,-4,4\right)
$$

$$
\text { d. } \begin{aligned}
& \frac{7 x+4}{x^{2}+3 x+2}-\frac{3 x-2}{x^{2}+3 x+2} \\
= & \frac{7 x+4-3 x+2}{(x+2)(x+1)} \\
= & \frac{4 x+6}{(x+2)(x+1)}=\frac{2(2 x+3)}{(x+2)(x+1)} \quad x \neq-2,-1
\end{aligned}
$$

e. $\frac{1}{7(x-3)}+\frac{4}{7}=\frac{3}{(x-3)} \rightarrow \frac{1}{7(x-3)}+\frac{4 x-12}{7(x-3)}=\frac{21}{7(x-3)}$

$$
\frac{4 x-11}{1(x-3)}=\frac{21}{\pi(x-3)}
$$

$$
\begin{gathered}
4 x-11=21 \\
\frac{4 x}{4}=\frac{32}{4} \\
1 x=8
\end{gathered}
$$

$$
\begin{aligned}
& \text { f. } \frac{3}{y+3}+\frac{2 y}{y^{2}+7 y+12} \\
&= \frac{3}{y+3}+\frac{2 y}{(y+4)(y+3)}=\frac{3(y+4)+2 y}{(y+4)(y+3)}=\frac{5 y+12}{(y+4)(y+3)} \quad y \neq-4,-3 .
\end{aligned}
$$

$$
\begin{aligned}
\text { g. } & \frac{1}{y+3}+\frac{4}{y^{2}+4 y+3} \\
= & \frac{1}{y+3}+\frac{4}{(y+3)(y+1)}=\frac{y+1+4}{(y+3)(y+1)}=\frac{y+5}{(y+3)(y+1)}
\end{aligned}
$$

$$
y \neq-3,-1
$$

$$
=\frac{2 x+3}{5(x-6)}-\frac{3 x+4}{x-6}=\frac{2 x+3-15 x-20}{5(x-6)}=\frac{-13 x-17}{5(x-6)} \quad x \neq 6
$$

$$
\text { j. } \begin{aligned}
& \frac{18}{5 x+10}+\frac{4}{5}=\frac{-6}{x+2} \\
& \frac{18}{5(x+2)}+\frac{4 x+8}{5(x+2)}=\frac{-30}{s(x+2)}
\end{aligned}>\begin{array}{r}
18+4 x+8=-30 \\
\frac{4 x}{4}=\frac{-56}{4}>x=-14
\end{array} x \neq-2
$$

k. $\frac{2}{x-6}+\frac{7}{x+2}=\frac{4 x+2}{x^{2}-4 x-12}$

$$
\begin{aligned}
\frac{2}{x-6}+\frac{7}{x+2} & =\frac{4 x+2}{(x-6)(x+2)} \\
\frac{2 x+4+7 x-42}{(x-6)(x+2)} & =\frac{4 x+2}{(x-6)(x+2)} \\
2 x+4+7 x-42 & =4 x+2 \\
2 x+7 x-4 x & =2+42-4 \\
5 x & =40
\end{aligned}
$$

$$
x \neq 6
$$

$$
x \neq-2
$$

$$
\begin{aligned}
& \text { h. } \frac{2 x+3}{5 x-30}-\frac{3 x+4}{x-6} \\
& \text { i. } \frac{2}{5}-\frac{7}{(x+6)}=\frac{9}{5(x+6)} \\
& \frac{2(x+6)}{5(x+6)}-\frac{7(5)}{5(x+6)}=\frac{9}{5(x+6)} \quad \begin{array}{l}
2 x-23=9 \\
2 x=32 \\
\boldsymbol{x}=16 \quad x \neq-6
\end{array} \\
& \longrightarrow 2(x+6)-7(5)=9 \\
& 2 x+12-35=9
\end{aligned}
$$

2.A boat travels at an average speed of $15 \mathrm{~km} / \mathrm{h}$ in still water. The boat travels 12 km downstream in the 2. same time as it travels 8 km upstream. Determine the average speed of the current.

$$
\begin{aligned}
d=s \cdot t \\
t=\frac{d}{s}
\end{aligned} \quad \begin{array}{rlrl}
12 & \frac{12}{15+x} & =\frac{8}{15-x} & x=\arg \text { speed of current } \\
12(15-x) & =8(15+x) . & \\
180-12 x & =120+8 x & \therefore \text { The average speed } \\
-20 x & =-60 & & \text { of the current is } \\
x & =3 . & &
\end{array}
$$

3.A car travels from home to work at an average speed of $60 \mathrm{~km} / \mathrm{h}$, and because of traffic returns from 3. work at an average speed of $40 \mathrm{~km} / \mathrm{h}$. What is the average speed for the entire trip?

Average speed:

$$
\begin{gathered}
\frac{2}{x}=\frac{1}{60}+\frac{1}{40} \\
240=2 x+3 x \\
x=48
\end{gathered}
$$

4. How much lemon juice must be added to 2 L of water to make a lemonade solution that contains 20%
5. lemon juice?

$$
\begin{aligned}
& \text { * Add } x \text { lemon juice. } \\
& \begin{aligned}
\frac{x}{x+2} & =\frac{20}{100} \\
100 x & =20 x+40 \\
80 x & =10 \\
x & =1 / 2
\end{aligned}
\end{aligned}
$$

\therefore The average speed is $48 \mathrm{~km} / \mathrm{h}$.
\qquad
\qquad
PC11 Final Exam TERM 4 Review
Chapter 2: Absolute Values and Radicals

1. Write each radical in simplest form. For what values of the variables is the radical defined?

$$
\begin{array}{ll}
\text { a) }\left(\sqrt{3 a^{2} b}\right)\left(\sqrt{6 a b^{5}}\right) \\
(a \sqrt{3 b})\left(b^{2} \sqrt{6 a b}\right) \\
=a b^{2} \sqrt{3 \cdot 6 \cdot a \cdot b \cdot b} \\
=a b^{3} \sqrt{18 a} \\
=3 a b^{3} \sqrt{2 a}
\end{array} \quad\left\{\begin{array} { l l }
{ } \\
{ = } & { = 4 x \cdot 0 , b \in \mathbb { R } \quad \text { b) } (4 x \sqrt { 1 0 x y }) (3 y \sqrt { 2 x }) } \\
{ } & { = 4 x \cdot 3 y \cdot \sqrt { 1 0 x y \cdot 2 x } } \\
{ } & { = 2 4 x ^ { 2 } y \sqrt { 5 y } }
\end{array} \quad \left\{\begin{array}{l}
x \geqslant 0, \in \mathbb{R} \\
y \geqslant 0, \in \mathbb{R}
\end{array}\right.\right.
$$

$$
\begin{aligned}
= & a b \sqrt{3 \cdot 6 \cdot a \cdot b \cdot b} \\
= & a b^{3} \sqrt{18 a} \\
= & 3 a b^{3} \sqrt{2 a} \\
& \left(2 x \sqrt[3]{2 y^{4}}\right)\left(x^{2} \sqrt[3]{4 y^{2}}\right) \\
= & 2 x^{3} \sqrt[3]{8 y^{6}} . \\
& 4,3
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \begin{array}{l}
\left(2 x^{3} \sqrt[3 y^{4}]{ }\right)\left(x^{2} \sqrt[3]{4 y^{2}}\right) \\
=2 x^{3} \sqrt[3]{8 y^{6}} .
\end{array} \quad\{x, y \in \mathbb{R}\} \quad 4 x^{3} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
\left(a b \sqrt[3]{2 a b^{2}}\right)\left(3 a \sqrt[3]{4 a^{2} b^{2}}\right) \\
= \\
=3 b \cdot 3 a \cdot \sqrt[3]{2 a b^{2} \cdot 4 a^{2} b^{2}} \\
=3 a^{2} b \cdot \sqrt[3]{8 a^{3} b^{4}} \\
=
\end{array} \quad 6 a^{3} b^{2} \sqrt[3]{b}
\end{aligned} \quad\{a, b \in \mathbb{R}
$$

e) $\frac{9 x^{2} \sqrt{x^{2} y^{5}}}{3 x^{5} \sqrt{x^{6} y}} \quad\left\{\begin{array}{c}y \geq 0, y \in \mathbb{R} \\ x \in \mathbb{R}\end{array}\right.$
f) $\frac{\sqrt[3]{81 x^{2} y^{5}}}{\sqrt[3]{x^{5} y}} \quad\{x, y \in \mathbb{R}$

$$
\{x, y \in \mathbb{R}
$$

$$
\begin{aligned}
& =\frac{3 y \sqrt[3]{3 x^{2} y}}{x \sqrt[3]{x^{2} y}} \\
& =\frac{3 y \sqrt[3]{3} \cdot \sqrt[3]{x^{2} y}}{x \sqrt[3]{x^{2} y}}=\frac{3 y \sqrt[3]{3}}{x}
\end{aligned}
$$

$=\frac{3 y \sqrt[3]{3 x^{2} y}}{x \sqrt[3]{x^{2} y}}$
$=\frac{3 y \sqrt[3]{3} \cdot \sqrt[3]{x^{2} y}}{x \sqrt[3]{x^{2} y}}=\frac{3 y \sqrt[3]{x}}{x}$
Defined for:

$$
\begin{aligned}
& \text { 25) }-4 \sqrt{216 x^{2} y^{2} z} \\
& =-4 \cdot 6 \cdot x \cdot y \sqrt{6 z} \\
& =-24 x y \sqrt{6 z}
\end{aligned}\left\{\begin{array}{l}
z \geq 0, \\
x, y, z \in \mathbb{R} \\
\text { 27) } 3 \sqrt{16 x^{4} y^{4} z} \\
=12 x y \sqrt{z} \quad\{z \geq 0, x y, z \in \mathbb{R}
\end{array}\right.
$$

26) $-3 \sqrt{24 a^{4} b^{2} c^{3}}$
$=\frac{3 x y \sqrt{3 x^{85} \sqrt{y}}}{}=\frac{3 y^{2}}{x^{5}}$
2. Simplify each radical. For what values of the variables is the radical defined? State restrictions.
28) $-2 \sqrt{48 a^{3} b^{4} c^{2}}$

$$
\begin{aligned}
& \text { 28) }
\end{aligned}-2 \sqrt{48 a^{3} b^{4} c^{2}}=\left\{\begin{array}{l}
a \leq, \\
= \\
=-2 \cdot 4 \cdot a \cdot b^{2} \cdot c \sqrt{3 a}
\end{array} \quad-8 a b^{2} c \sqrt{3 a} .\right.
$$

$$
=-8 a b^{2} c \sqrt{3 a}
$$

$$
\begin{aligned}
& \text { 29) } 6 \sqrt{75 m p^{2} q^{3}} \\
& =6 \cdot 5 \cdot p \cdot q \sqrt{3 m q}\left\{\begin{array}{l}
m \geq 0 \\
=2 \geq 0 \\
m, p, q
\end{array} \in \mathbb{R}\right.
\end{aligned}
$$

30) $4 \sqrt{36 x^{2} y^{3} z^{4}}$

Defined for

$$
=24 x y z^{2} \sqrt{y}
$$ $=24 x y z^{2} \sqrt{y}$

Chapter 8: Absolute Value and Reciprocal Functions

1. For each graph, drawn $y=f(x)$ and reciprocal functions $y=\frac{1}{f(x)}$. Label all the important points. State the domain and range for both. Indicate the equation of the vertical and horizontal asymptotes.
a. Graph $\left.y=\frac{1}{-3(x-1)} \right\rvert\, \quad f(x)=-3 x+3$
c. graph $y=\frac{1}{x^{2}+4}$

$$
\begin{aligned}
& \text { Vertical } \\
& \text { asymptote } \\
& x=1
\end{aligned}
$$

b. Graph $y=\frac{1}{-x^{2}+2} \quad f(x)=-x^{2}+2$
d. Graph $y=\frac{1}{(x+5)^{2}} \quad f(x)=(x+5)^{2}$

$$
\left\{\begin{array}{l}
(5,12) \\
y=|f(x)|
\end{array}\right) y=-2\left(x^{2}-3 x-4\right), ~ y=-2(x-4)(x+1)
$$

Critical points:
$(-1,0)$ and $(4,0)$ Domain: $x \in \mathbb{R}$
Range for $y=f(x): y \leq 25, y \in R$ Range for $y=|f(x)|: y \geqslant 0, y \in \mathbb{R}$ a.

b.

Linear Equation:

$$
y=x-2
$$

Reciprocal:

$$
y=\frac{1}{x-2}
$$

Quadratic equation:

$$
y=x^{2}-2 x-3
$$

Reciprocal graph:
$y=\frac{1}{x^{2}-2 x+3}$

Quadratic

$$
\begin{aligned}
& y=(x-4)^{2} \\
& \text { or } \\
& y=x^{2}-8 x+16
\end{aligned}
$$

Reciprocal:

$$
y=\frac{1}{(x-4)^{2}}
$$

4. Solve algebraically. Remember to check solutions.

$$
\begin{aligned}
& \text { If }\left|x^{2}+9+0,6 x=\left|x^{2}+9\right|\right. \\
& 6 x=x^{2}+9 \\
& 0=x^{2}-6 x+9 \\
& 0=(x-3)(x-3) \\
& \therefore x=3
\end{aligned}
$$

\therefore Solutions are $x=12,-2,6$ or 4.

$$
\begin{aligned}
& 24=-x^{2}+10 x \\
& x^{2}-10 x+24=0 \\
& (x-6)(x-4)=0 \\
& 1 x=6 \text { or } x=4 . \\
& 24=1(6)^{2}-10(6) \mid \\
& 24=\mid)^{24}(1) \\
& 24=24 \\
& 24=\left|(4)^{2}-10(4)\right| \\
& 24=\frac{1241}{24}=24
\end{aligned}
$$

b. $\quad|2 x-4|=7+x \quad 6(-3)=\mid(-3)^{2}+9$

$$
\begin{gathered}
2 x-4=7+x \\
x=11
\end{gathered}\left\{\begin{array}{cc}
-2 x+4=7+x & -18=18+9+18 x \\
-3 x=3 & \therefore \text { solutions } \\
x=-1 & x=11 \text { and }-1
\end{array}\right.
$$

Check: $|2(11)-4|=7+1 \mid \quad\langle | 2(-1)-4 \mid=7-1$
$6=6 \quad 1191+12=31$
Check: $|5-3(-14)|+12=31|15-3(8)|+12=31$ $1-19 \mid+12=31$
$31=31$ $31=31$
5. a. If a graph has vertical asymptotes at $x=6$, what is a possible equation of the reciprocal function. V.asymptote @ $x=6$

Reciprocal $f(x) \geqslant x$-int e $(6,0)$
\therefore Possible equation could be

$$
y=(x-6)^{2}
$$

So reciprocal function would be $y=\frac{1}{(x-6)^{2}}$ b.If a graph has a vertical asymptote at $x=2$ and $x=-1$, what is a possible equation of the function.

$$
\begin{aligned}
& y=(x+1)(x-2) \\
& y=x^{2}-x-2 \\
& \quad f(x)=x^{2}-x-2
\end{aligned}
$$

\because Reciprocal function could be $\frac{1}{(x+1)\left(x^{-2}\right)}$.
6. Sketch the graph of the corresponding reciprocal function

$$
\text { Vertex }=(-1,4) \quad \therefore \text { Reciprocal point } @\left(-1, \frac{1}{4}\right)
$$

Graph touches same points at $y=1$
and $y=-1$.
Horizontal asymptote $@ y=0$ and vertical asymptotes © $x=-3$ and $x=1$.

7. What is a possible equation for each graph
a)

$$
y=|2 x-4|
$$

OR $y=|-2 x+4|$
b)

$$
y=\left|x^{2}-1\right|
$$

$\Delta x y=\left|-x^{2}+1\right|$

Chapter 6: Trigonometry

1. The Point $(5,8)$ is on the terminal arm of an angle θ in standard position.
a. Determine the distance r from the origin to P.

$$
\begin{aligned}
& r^{2}=5^{2}+8^{2} \\
& r^{2}=89 \\
& r=\sqrt{89}
\end{aligned}
$$

b. Determine the primary trigonometric ratios of θ.

$$
\begin{aligned}
\sin \theta & =\frac{8}{\sqrt{89}} & \tan \theta=\frac{8}{5} & \cos \theta
\end{aligned}=\frac{5}{\sqrt{89}}
$$

c. Determine the measure of θ to the nearest degree

$$
\begin{aligned}
\theta & =\tan ^{-1}(8 / 5) \\
& =57.995
\end{aligned}
$$

\therefore The measure of $\angle \theta$ is 58°,
2. If $\cos \theta=\frac{5}{13}$, with θ in the first quadrant, determine $\sin \theta$ and $\tan \theta$. Determine the reference angle and the angle in standard position.

$$
\cos \theta=\frac{5}{13}\left(\begin{array}{l}
\text { adj }) \\
(\text { hyp })
\end{array}\right.
$$

So, $\sin \theta=\frac{12}{13}$
$\tan \theta=\frac{12}{5}$

$$
\theta_{R}=\tan ^{-1}(12 / 5)
$$

$$
=67.38
$$

$$
\theta_{R}=\theta \mathrm{b} / \mathrm{c} \text { it's in }
$$

the first quadrant
$\therefore \theta_{R}$ and θ are 67.4°.
3. Determine all the angles between 0° to 360° in standard position that have a reference angle of 35 degrees. Draw all the angles in standard position.

Q2: $180^{\circ}-35^{\circ}=145^{\circ}$
Q3: $180^{\circ}+35^{\circ}=215^{\circ}$
$04^{\circ} 360^{\circ}-35^{\circ}=325^{\circ}$
\therefore The angles are $35^{\circ}, 145^{\circ}, 215^{\circ}$ and
4. Given that $\cos \theta=-\frac{4}{5}$, determine the other primary trig ratios of the angle. To the nearest degree, 325° determine the possible values for θ when $0^{\circ} \leq \theta \leq 360^{\circ}$

* Cosine is negative so θ is in Quadrants 2 and 3 . $\theta_{R}=\cos ^{-1}(4 / 5)$ use positive

$$
\begin{aligned}
& \therefore \text { Since } \theta \text { is in Q2 or Q3: } \\
& \theta_{1}=180-37=143^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2}=180+37=217^{\circ} \text { is } 143^{\circ} \\
& \theta \text { or } 217^{\circ}
\end{aligned}
$$

5. To the nearest degree, which values of θ satisfy the equation $\tan \theta=-\frac{4}{3}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$?

$$
\theta_{R}=\tan ^{-1}(4 / 3) \approx 53^{\circ}
$$

$$
\begin{aligned}
& \text { action } \tan \theta=-\frac{4}{3} \text { for } 0^{\circ} \leq \theta \leq 360^{\circ} ? \\
& \text { Q2: } \theta \stackrel{180^{\circ}-53^{\circ}-127^{\circ}}{ }
\end{aligned}
$$

* tan is negative in $Q^{2}+Q 4 . \quad Q 4^{*}: \theta=360-53^{\circ}=30^{\circ}$

$$
R(5,-12) \quad S(-4,-6)
$$

a) Sketch each angle in standard position so that the terminal arm passes through each point
b) Determine the exact values of the sine, cosine and tangent ratios for each angle formed.

b) $\frac{B(5,-12)}{y=\sqrt{5^{2}+12^{2}}}$
$y=\sqrt{5^{2}+122}$
$\frac{5(-4,-6)}{x=\sqrt{4^{2}+6^{2}}}$
$x=2 \sqrt{13}$
$\sin \theta=\frac{-12}{13} \quad \sin \theta=\frac{-6}{2 \sqrt{13}}=\frac{-3 \sqrt{13}}{13}$
$\cos \theta=\frac{5}{13} \quad \cos \theta=\frac{-4}{2 \sqrt{13}}=\frac{-2 \sqrt{13}}{13}$
$\tan =\frac{-12}{5} \quad \tan \theta=\frac{6}{4}=\frac{3}{2}$

For R :
$\theta_{R}=\tan ^{-1}(12 / 5)=67 . .^{\prime}$
$\therefore \theta=360^{\circ}-67.4=292.6$
For s :
$\theta_{R}=\tan ^{-1}(3 / 2)=56.3^{\circ}$
$\therefore \theta=180^{\circ}+56.3^{\circ}=236,3^{\circ}$
So the angles
are 292.6° and 236.3°.
. 7. Give triangle ABC , with angle A , side AB and side BC . Complete the chart to summarize how to get each possible solution.

Description of possible triangles	Ratio
No Triangle	$\frac{B C}{A B}<\sin A$
1 Right Triangle	$\frac{B C}{A B}=\sin A$
1 Isosceles Triangle	$\frac{B C}{A B}=1$
1 Scalene Triangle	$B C / A B>1$
2 Scalene Triangles	$\sin A<B C / A B<1$

8. One fire ranger station at A reports smoke 30 km away in a direction $\mathrm{E} 30^{\circ} \mathrm{N}$ at B . A second station at C due east of the first station reports the smoke is 20 km away. To the nearest tenth of a kilometer, determine the distance between the two stations.

Find "b"

Case 1:

$$
\begin{aligned}
& \frac{\sin 30}{20}=\frac{\sin C}{30} \\
& \sin C=\frac{30 \sin 30}{20} \\
& =0.75 \\
& \angle C=\sin ^{-1}(0.75) \\
& =48.6 \\
& \angle B=180^{\circ}-30-48.6 \\
& =101.4^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin 101.4^{\circ}}{b}=\frac{\sin 30^{\circ}}{20} \\
& b=\frac{20 \sin 101.4^{\circ}}{\sin 30^{\circ}} \\
&=39.2
\end{aligned}
$$

Cause 2:

$$
\begin{aligned}
\angle C & =180^{\circ}-49.6 \\
& =131.4^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\sin 18.6}{b}=\frac{\sin 30}{20} \\
b=\frac{20 \sin (18.6)}{\sin 30} \\
=12.76
\end{gathered}
$$

$\angle B=180-131,4-30 \therefore$ The stations are $=18.6^{\circ}$. either 39.2 km apart or $12,8 \mathrm{~km}$ apart.
9. The longest side of a triangle is 34^{\prime}. The measures of two angles of the triangle are 40 and 65 . Find the lengths of the other two sides.

$$
\angle C=180-40-65=75^{\circ} .
$$

* The longest side must be across from the biggest angle!

$$
\begin{array}{rr}
\frac{\sin 75}{34}=\frac{\sin 40}{a} & \frac{\sin 75}{34}=\frac{\sin 65}{b} \\
\left.\begin{array}{rl}
a=\frac{34 \sin (40)}{\sin 75} & b
\end{array}\right)=\frac{34 \sin (65)}{\sin 75} \\
\approx 22.6 & =31.9
\end{array}
$$

\therefore The other two sides are 22.6.' and 31.9^{\prime}
10. A house is built on a triangular plot of land. Two sides of the plot are 160 feet long and they meet at angle of 85°. If a fence is to be built around the property, how much fencing is needed?

$$
\begin{aligned}
& x^{2}=160^{2}+160^{2}-2(160)(160) \cdot \cos (85) \\
& x^{2} 46737.626 \\
& x=216.188
\end{aligned}
$$

$$
\text { Perimeter }=160 \mathrm{ft}+160 \mathrm{ft}+216.188 \mathrm{ft}=536.188 \mathrm{ft}
$$

\therefore You will need about 537 ft of
fencing to go around the property

1. A post is supported by two wires (one on each side going in opposite directions) creating an angle of 80° between the wires. The ends of the wires are 12 m apart on the ground with one wire forming an angle of 40° with the ground. Find the lengths of the wires.
2. Two ships are sailing from Halifax. The Nina is sailing due east and the Pinta is sailing 43° south of east. After an hour, the Nina has travelled 115 km and the Pinta has travelled 98 km . How far apart are the two ships?
(A) (B) (C)
3. 3 friends are camping in the woods, Bert, Ernie and Elmo. They each have their own tent and the tents are set up in a Triangle. Bert and Ernie are 10 m apart. The angle formed at Bert is 30°. The angie formed at Elmo is 105°. How far apart are Ernie and
4.

$$
\begin{aligned}
& \frac{\sin 80}{12}=\frac{\sin 40}{x} \\
& x=\frac{12 \sin 40}{\sin 80}=7.83
\end{aligned}
$$

$$
\begin{aligned}
& \angle y=180-80-40=60^{\circ} \text { : } \\
& \frac{\sin 60^{\circ}}{y}=\frac{\sin 80}{12}
\end{aligned}
$$

$$
\therefore \text { The wires are } 7.8 \mathrm{~m} \text { and } y=\frac{(\sin 60)(12)}{\sin 80}
$$

$$
10.6 \mathrm{~m} \text { long. } \quad y=10.55
$$

12.

$$
\begin{aligned}
& x^{2}=98^{2}+115^{2}-2(98)(115) \cdot \cos (43) \\
& x^{2}=6^{344.2876}
\end{aligned}
$$

$x=79.65$
wo ships are approximately
80 km apart
\therefore The two shies are approximately
13.

\therefore Ernie ard Elmo are

$$
\begin{aligned}
& \frac{\sin 105}{10}=\frac{\sin 30}{00^{\circ}} \\
& a=\frac{(\sin 30)(10)}{\sin 105} \approx \sum_{0}^{5} 18=
\end{aligned}
$$

Chapter 1: Sequence and Series

1. Identify this series as arithmetic or geometric, then determine its sum.

$$
4+2.5+1+\ldots .-32
$$

Arithmetic or Geometric: \qquad Arithmetic

$$
d=-1.5
$$

$$
\begin{aligned}
& S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2}=\frac{25(4-32)}{2} \quad \begin{array}{l}
\text { (find } n 2 \\
22
\end{array} \quad 4+(n-1)(-1.5) \\
&-36=-1.5 n+1.5 \\
&-37.5=-1.5 n \\
& \mid n=25
\end{aligned}
$$

\therefore The sum of the series is -350 .
2. One of Van Gogh's painting was appraised at $\$ 250000$. The value of the carving is estimated to increase by 12% each year. What will be the approximate value of the painting after 15 years?

$$
\begin{array}{ll}
t_{1}=250,000 & t_{15}=t_{1} r^{15-1} \\
r=12 \% \text { increase }=1+0.12=1.12 & t_{15}=250,000(1.12)^{14} \\
n=15 & t_{15}=1221778.071 \\
t_{15}=? & 1
\end{array}
$$

\therefore The approximate value of the painting

$$
\text { in } 15 \text { years is } \$ 1,221,778
$$

3. Find the sum of the first 12 terms for the series $8+2+(-4)+(-10)+\ldots$

$$
\begin{array}{lr}
d=-6 & S_{n}
\end{array}=\frac{n\left(2 t_{1}+d(n-1)\right)}{2}=8 ~=\frac{12(2(8)-6(12-1))}{2}=-300 .
$$

\therefore The sum of the first 12 terms is - 300.
4. Find the sum of the first 76 terms for the series $6+14+22+30+\ldots$

$$
\begin{aligned}
d=8 & S_{n}
\end{aligned}=\frac{76(2(6)+8(76-1))}{2}
$$

\therefore The sum of the first 76 terms is
5. An infinite geometric series with $r=-\frac{1}{9}$ is represented by this equation: $t_{n}=-5\left(-\frac{1}{9}\right)^{n-1} 23256$,
a. Determine the first 4 terms of the series

$$
\begin{array}{ll}
t_{1}=-5(-1 / 9)^{1-1}=-5 & t_{3}=\frac{-5}{81} \\
t_{2}=-5(-1 / 9)^{1}=5 / 9 & t_{4}=5 / 729 \\
\text { b. Determine whether the series diverges }
\end{array}
$$

\therefore The first 4 terms are $-5,5 / 9,-5 / 8,5 / 129$.
b. Determine whether the series diverges or converges

The series converges, $r=-1 / 9 \quad \therefore-1<r<1$
c. If the series has a finite sum, determine the sum.

$$
\begin{aligned}
S_{\infty}=\frac{t_{1}}{1-r} & =\frac{-5}{1+1 / 9}=-5 \cdot \frac{9}{1_{2}}=\frac{-9}{2} \\
& ; \text { The finite sum is }-9 / 2 .
\end{aligned}
$$

6. You invest $\$ 120000$ in the bank on your $50^{\text {th }}$ birthday. Every year the interest in your account grows 5% per year. How much money will have accumulated in your account on your $65^{\text {th }}$ birthday?

$$
\begin{aligned}
& t_{1}=120000 \\
& r=1+0.05=1.05 \\
& n=65-50=15
\end{aligned}
$$

$$
\begin{aligned}
& t_{15}=t_{1} \cdot r^{15}-1 \\
& t_{15}=120,000(1,05)^{15}
\end{aligned}
$$

$$
\begin{aligned}
& =120,000(1.05) \quad \text { have about } \\
& =237591.790 \rightarrow \text { change in your scour } 237,591.79
\end{aligned}
$$

7. The circumference of a ripple made by a rock is 4 cm , this circumference chang in your account. What is the sum of the circumference of all the ripples?

$$
r=1+0.07=1.07
$$

$\hat{\imath}$ infinite.

$$
t_{1}=4 \mathrm{~cm}
$$

westion
8. Identify each infinite geometric series that converges. Determine the sum of any series that converges

$$
\begin{aligned}
& t_{1}=5.5 \\
& d=-2.5 \\
& n=40
\end{aligned}
$$

$$
\begin{aligned}
S_{40} & =\frac{40(2(5.5)-2.5(40-1))}{2} \\
& =-1730 \quad \therefore S_{40} \text { is }-1730 .
\end{aligned}
$$

10. Find the first 3 terms of the arithmetic series with $t_{1}=14, S_{n}=-1207, t_{n}=-85$
11. Determine the first term of the geometric sequence $t_{8}=\frac{1}{4}$ and $r=\frac{1}{4} \quad \therefore$ First 3 terms are

$$
\begin{aligned}
t_{n} & =t_{1} r^{n-1} \\
\frac{1}{4} & =t_{1}\left(\frac{1}{4}\right)^{8-1} \\
\frac{1}{4} & =t_{1} \cdot \frac{1}{16384} \\
t_{1} & =4096
\end{aligned}
$$

14,11 and 8.

$$
\begin{aligned}
& \text { The first term of the } \\
& \text { sequence is } 4096 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \\
& -1207=\frac{2}{n(14-85)} \\
& -2414={ }^{2}-71 n \quad \rho / n=34 \\
& \begin{aligned}
t_{n}=t_{1}+(n-1) d & & \\
-85=14+(34-1) d & & \\
\frac{-99}{33}=\frac{33 d}{33} & t_{1} & =14 \\
\frac{1-3}{}=d & t_{2} & =14-3=11 \\
& & t_{3}=11-3=8
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}=2^{\text {a. } 2-3+4.5-6.75+\ldots} \\
& \begin{array}{l}
s_{1}=2 \\
s_{2}=-1
\end{array} \\
& s_{3}=3.5 \\
& s_{y}=-3.25 \\
& \therefore \text { This series diverges. } \\
& \text { b. } 1 / 3+2 / 9+4 / 27 . \\
& \begin{aligned}
r=2 / 3 . & =\frac{1}{729}+\ldots \\
S_{1} & =\frac{1}{3} \approx 0.333 . \\
S_{2} & =5 / 9 \approx 0.556 \\
S_{3} & =19 / 27 \approx 0.704 \\
S_{4} & =\frac{65}{7} \approx 0.803 \\
S_{5} & \approx \frac{211 / 243}{} \approx 0.868 \\
S_{6} & =\frac{665 / 724}{} \approx 0.912
\end{aligned} \\
& S_{1}=\frac{1}{3}=0.333 . \quad S_{N}=\frac{1 / 3}{1 / 3}=1 \\
& \text { !. } \\
& \text { Convergent. } \\
& \text { to } \\
& \text { 9. An arithmetic series has } t_{1}=5.5 \text { and } d=-2.5 \text {. Determine } \mathrm{S}_{40} \text {. }
\end{aligned}
$$

